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Abstract

High-frequency dither forces are often used to reduce unwanted vibration in frictional systems. This paper examines how

the effectiveness of these dither-cancellation techniques is influenced by the nature of periodic signal employed. The paper

investigates a single-degree-of-freedom (sdof) system consisting of a mass in frictional contact with a translating belt using

two different models of friction. Prior work by the authors focused on sinusoidal dither waveforms. This paper extends this

analysis to general, periodic dither forces. Using an averaging technique, the optimal waveforms are determined among

periodic signals having either unit-amplitude or unit-rms value. For unit-amplitude dither signals, it is found that square

waveforms are able to quench self-excited oscillations with the smallest amplitude of all waveforms of equal strength at

every belt speed. Among unit-rms dither waveforms, square waves are best for low belt speeds, but sinusoidal dither is

revealed to be best in higher ranges of belt speed. After studying generic waveforms, the results are specialized for three

specific examples: sinusoidal, triangular, and square. In particular, the relative performance of the three waveforms is

studied using an averaging technique as well as direct time integration.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Recent experimental work at Georgia Tech reported that high-frequency dither forces could suppress squeal
in automotive disc brakes [1]. A preliminary analytical and numerical study of this phenomenon treated the
brake/caliper system as a mass-on-a-moving-belt problem [2]. The study, which was restricted to sinusoidal
dither signals, used numerical integration to simulate the system for a wide range of system and excitation
parameters. The simulation results were validated using an analytical averaging technique used recently by
Thomsen and co-workers [3–5]. It was found that there was good qualitative agreement between the numerical
and analytical results. It was also discovered that, while dither signals can quench friction-induced oscillations,
they can also destabilize a non-oscillating system if applied incorrectly.

While sinusoidal waveforms are a logical choice for dither signals, numerous alternatives are feasible. Prior
research performed using the Georgia Tech brake experiment examined a variety of waveforms (for normal
dither). For example, in Ref. [6], dither cancellation was implemented in a ‘‘burst mode’’ in order to reduce the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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power consumption. The burst-waveform was comprised of an ‘‘on-segment’’ followed by an ‘‘off-segment.’’
The on segment consisted of a prescribed number of cycles of a particular frequency. The frequency and
number of cycles, the relative duration of the on-segment to the off-segment as well as the period of the
combined signal, were all varied to determine favorable squeal cancellation. One of the surprising findings of
the waveform study was that when the duration of the on-segment was reduced below that of the off-segment,
dither was unable to control the brake squeal, regardless of the frequency of the dither on-segment.

Apart from the use of dither in frictional systems, other types of dither waveforms have been studied in
reference to a variety of applications. Oldenburger and Nakada [7] compared both triangular and sinusoidal
waveforms for stabilization of limit cycles in nonlinear circuits. Their study developed smoothed or ‘‘effective
characteristics’’ for the system nonlinearities using the theory of describing functions. Extensions of the
describing-function technique may be found in the text by Gelb and Vander Velde [8]. Among the different
waveforms considered in Ref. [8] are sine-plus-a-constant, two sines of differing frequency, and random
signals. It should be emphasized that, due to the nonlinearities present in the system, the results for a single
sinusoid cannot be directly applied to the case of general-periodic or random-input dither. Instead, each
waveform must be examined individually to obtain accurate predictions of performance.

In the present paper, the problem of a mass-on-a-moving-belt is further studied. The problem has been used
in numerous studies as a simple model of friction-induced vibration in mechanical systems; e.g., Refs. [9–11].
A variety of friction laws have been applied to this problem including Coulomb’s law, sticktion (Coulomb’s
law with differing static and dynamic friction coefficients), and different forms of Stribeck laws. In Ref. [2],
two different friction laws were used: one was a cubic-type Stribeck law that had been used by Thomsen [3]
and an exponential-based friction law. Since the two laws demonstrated different qualitative behavior when
subjected to dither, both laws are considered again in this paper.

The primary purpose of this paper is to examine how the type of dither waveform influences the
effectiveness of the dither cancellation technique. The paper first utilizes an analytical technique termed the
method of direct separation of motions [12], to investigate general, periodic dither waveforms. Through use of
the calculus of variations, the analytical results are used to determine optimal waveforms for stabilizing
systems with Stribeck and exponentially decreasing friction laws. The generic results are specialized to the case
of square and triangular waveforms, for comparison with previously obtained sinusoidal dither results.
Emphasis is placed on developing closed-form expressions for effective friction characteristics and for stability
predictions. The results of the averaging technique are then validated using numerical integration.
2. Model development

The model used in this paper is very similar to the one used in Ref. [2]; therefore, only a brief description of
the model is given here. Fig. 1 shows a spring-mass-damper system resting on a translating surface. The single-
degree-of-freedom (sdof) system is subjected to a tangential (i.e., parallel to the sliding surface) dither force
denoted as AT g(oTt), where AT is the amplitude and g is a zero-mean, periodic waveform. The fundamental
frequency of the periodic signal is given by oT, which is typically very large compared to the natural frequency
and/or the ‘‘squeal frequency’’ of the system. In other words, the dither signal period, T ¼ 2p/oT, is assumed
to be very small in comparison to other relevant time scales. The normal force N and the belt velocity V0 are
assumed to be constant.
c

k

V0

m

N

ATg(�Tt)

x(t)

�

Fig. 1. Sdof model.
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The non-dimensional equation of motion of the sdof system is given by

d2x

dt2
þ 2z

dx

dt
þ x ¼ f

dx

dt

� �
þDT gðRTtÞ, (1)

where o2
0 ¼ k=m is the system’s natural frequency, t ¼ o0t is non-dimensional time, z ¼ c/2o0m is the

damping ratio, and the tangential dither frequency and amplitude ratios are denoted by RT ¼ oT/o0 and
DT ¼ AT/k, respectively. Note that x and DT have units of length.

The scaled friction force f is defined as

f
dx

dt

� �
¼ mðvrÞF , (2)

where F ¼ N/k is a scaled normal force, vr ¼ v0�dx/dt is the relative velocity or ‘‘slip velocity’’ of the mass,
and v0 is a scaled belt velocity, v0 ¼ V0/o0.

2.1. Friction models

2.1.1. Stribeck friction law

The Stribeck friction law [9,10] possesses a low-velocity regime where the friction force magnitude decreases
with increasing slip velocity. As the magnitude of the slip velocity increases, the friction function flattens out
and then enters a ‘‘lubricated regime’’ where the friction coefficient increases with slip velocity. Although
many functional forms have been proposed throughout the literature, the mathematical model used by
Thomsen [3–5] is employed here:

mðvrÞ ¼
ms signðvrÞ �

3

2
ðms � mmÞ

vr

vm

�
1

3

vr

vm

� �3
 !

for vra0;

~ms for vr ¼ 0:

8>><
>>: (3)

ms can be interpreted as the ‘‘static’’ coefficient of friction, which applies when vr ¼ 0. The parameter
mm is the minimum coefficient of friction; the slip velocity at which this minimum friction coefficient is
attained is denoted vm. When the interface sticks and vr ¼ 0 for a finite time, the friction force fs must
be determined by equilibrium considerations; this is indicated in Eq. (3) by ~ms, which can be thought
of an unknown scaling factor between fs and the normal load. Note that, unlike many models used in prior
frictional studies, the friction coefficient m(vr) can be positive or negative, depending on the instantaneous slip
velocity vr.

2.1.2. Decreasing friction law

While the cubic nature of Eq. (3) lends itself to analytical treatment, the so-called ‘‘lubricated regime’’ of
vrj j4vm is not appropriate for many frictional systems, including automotive braking systems. Thus, a second
friction law is considered in which the friction coefficient smoothly and monotonically decreases with slip
velocity:

mðvrÞ ¼
mm þ ðms � mmÞ exp �

vrj j

vm

� �� �
signðvrÞ for vra0;

~ms for vr ¼ 0:

8><
>: (4)

The friction coefficient steadily decreases from a static friction coefficient, ms, to a value of mm,
which could be interpreted as the dynamic friction coefficient. In contrast with the Stribeck model (3), the
parameter vm denotes the slip velocity at which (m�mm) drops to 36.8% of its initial value (ms�mm).
Fig. 2 compares the Stribeck and Decreasing friction models for the case of ms ¼ 0.4 and mm ¼ 0.29.
Note that no effort has been made to match the initial negative slope of the two friction laws. The initial
slope of the Stribeck model is m0(0) ¼ �3(ms�mm)/(2vm) while that of the decreasing friction law is
m0(0) ¼ �(ms�mm)/vm.
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2.2. Mathematical form of the dither waveforms

In practice, the form and complexity of a dither waveform are limited only by the fidelity of the power
electronics and the dynamics of the force actuator. However, to limit the scope of this study, several
assumptions are made regarding the dither signal g(t):
1.
 g(t) has zero-mean.

2.
 g(t) is periodic with period 2p.

3.
 g(t) is antiperiodic from [0, p] versus [p, 2p]; i.e., g(t7p) ¼ �g(t).

4.
 g(t) is odd; i.e., g(�t) ¼ �g(t).

5.
 g(t) is strictly greater than zero over [0, p] and less than zero over [p, 2p].
A possible waveform is shown in Fig. 3. Conditions 1–4 imply that g(t) can be represented by a Fourier
series of the form

gðtÞ ¼
X1

k¼1;3;5;

bk sinðkoTtÞ. (5)

Initially, g(t) is assumed to have maximum value 1; later, the case of unit-rms dither signals is
also considered. Along with the function itself, the averaging technique requires an integral of the
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dither signal:

GðtÞ ¼
Z

gðtÞdtþ C ¼ �
X1

k¼1;3;5;

bk

koT

cosðkoTtÞ, (6)

where the constant of integration C is chosen so that G(t) has zero mean.
After deriving the averaged results for the system subject to a generic signal g(t) that meets the five

assumptions above, the results are specialized to three waveforms: sinusoidal, triangular, and square:
Sinusoidal:

gðtÞ ¼ sinðtÞ, (7a)

GðtÞ ¼ � cosðtÞ. (7b)

Triangular:

gðtÞ ¼

2

p
t for 0ptp

p
2
;

2�
2

p
t for

p
2
ptp

3p
2
;

�4þ
2

p
t for

3p
2
ptp2p;

8>>>>>><
>>>>>>:

(8a)

GðtÞ ¼

�
p
4
þ

1

p
t2 for 0 � t �

p
2
;

p
4
�

1

p
ðt� pÞ2 for

p
2
� t �

3p
2
;

�
p
4
þ

1

p
t� 2pð Þ

2 for
3p
2
� t � 2p:

8>>>>>><
>>>>>>:

(8b)

Square:

g tð Þ ¼
1 for 0ptpp;

�1 for potp2p;

(
(9a)

GðtÞ ¼
�
p
2
þ t for 0ptpp;

3p
2
� t for potp2p:

8><
>: (9b)

3. Analytical treatment using an averaging technique

In this section, the averaging technique used in Refs. [2,3] is generalized to consider a periodic dither signal
satisfying assumptions 1–5 above. The solution to Eq. (1) is first decomposed into a fast component, j, and a
slow component, Z:

xðtÞ ¼ ZðtÞ þ
1

RT

jðt;RTtÞ. (10)

Also, the magnitude of the dither force is assumed to be of the same order as the tangential dither frequency:

DT ¼ aT RT with aT ¼ Oð1Þ, (11)

where aT is termed the strength of the tangential dither signal. Substituting Eq. (10) into Eq. (1), grouping
terms, and averaging produces the governing equation for the slow dynamics in terms of the effective friction
characteristic, m̄

€Z þ 2z _Z þ Z þ m̄ð _Z � v0ÞF ¼ 0. (12)
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Using vr to denote the slow component of the slip velocity, m̄ can be expressed as

m̄ðvrÞ ¼ hmðvr þ aT GðtÞÞi, (13)

where h:i is the fast-time-average operator, which time-averages over one period of the fast excitation,
considering the slow time t to be fixed:

hf ðt;RTtÞi �
1

2p

Z 2p

0

f ðt;RTtÞdðRTtÞ. (14)

Eq. (13) applies to any zero-mean dither signal having sufficiently short period and any friction law. In
Sections 3.1 and 3.2, the effective friction laws for the two friction models under consideration are worked out
in detail. The effective friction laws provide considerable insight into how the discontinuous friction models
are smoothed through the effect of high-frequency dither. They can also be used to determine the stability of
steady sliding of the sdof system, as shown next.

The equilibrium displacement of the mass in a condition of steady sliding, denoted by Z̄, can be obtained by
setting €Z ¼ _Z ¼ 0 in Eq. (12). This yields

Z̄ ¼ �m̄ð�v0ÞF . (15)

To study the stability of steady sliding, small perturbations about equilibrium are considered,
zðtÞ ¼ ZðtÞ � Z̄. Inserting z(t) into Eq. (12), one obtains

€zþ hð_zÞ þ z ¼ 0, (16)

where the function hð_zÞ incorporates the effective friction term and the viscous damping term

hð_zÞ ¼ 2z_zþ F ðm̄ð_z� v0Þ � m̄ð�v0ÞÞ. (17)

The system’s equivalent linear damping is obtained by taking the first derivative of hð_zÞ. If it is negative, then
equilibrium (15) (corresponding to z ¼ 0) is unstable, and steady sliding will not be maintained. Ultimately,
sustained, limit-cycle oscillations will take place. Thus, the criterion for instability is given by

dh _zð Þ

d_z

����
_z¼0

¼ 2zþ m̄0ðv0ÞFo0. (18)

3.1. Effective friction law for Stribeck friction

The effective friction characteristic for the Stribeck friction law can be obtained by substituting Eq. (3) into
Eq. (13):

m̄ðvrÞ ¼
1

2p

Z 2p

0

a0 signðuÞ þ a1ðvr þ aT GÞ þ a3ðvr þ aT GÞ3
� �

dðRTtÞ, (19)

where

a0 ¼ ms; a1 ¼ �
3

2

ðms � mmÞ

vm

; a3 ¼
1

2

ðms � mmÞ

v3m
and u ¼ vr þ aT G.

Rearrangement and expansion of Eq. (19) leads to

m̄ðvrÞ ¼ a0hsignðuÞi þ ða1aT þ 3a3v2raT ÞhGi

þ a1vr þ a3v3r þ 3a3vra2T hG
2i þ a3a3T hG

3i. ð20Þ

Although not obvious, assumption 3 that the signal g(t) be antiperiodic results in the following property:

hGni ¼ 0 for n ¼ 1; 3; 5; . . . . (21)

By Eq. (21), expression (20) simplifies to

m̄ðvrÞ ¼ a0hsignðuÞi þ a3v3r þ ða1 þ 3a3a2T hG
2iÞvr. (22)
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strength aT. Parameters: ms ¼ 0.4, mm ¼ 0.29. solid line aT/vm ¼ 0; circles aT/vm ¼ 0.25; dashed line aT/vm ¼ 0.5; triangles aT/vm ¼ 0.75;

dotted line aT/vm ¼ 1.

M.A. Michaux et al. / Journal of Sound and Vibration 311 (2008) 802–823808
Note that if vrj j4aT Gmax, where Gmax is the maximum value of G(t) over [0, 2p], then u ¼ (vr+aTG)
has constant sign for all RTt. Conversely, when vrj joaT Gmax, the sign of u will change over [0, 2p] as shown in
Fig. 4. Because the signal g(t) is assumed to be odd (Assumption 4), RTt2 ¼ 2p�RTt1. Furthermore, because
Assumption 5 requires g(RTt)40 on [0, p], G(RTt) is monotonically increasing on [0, p] and monotonically
decreasing from [p, 2p]; therefore, RTt1 and RTt2 are isolated zero crossings. Thus, it can be shown that the
fast-time average of the signum function is given by

hsignðvr þ aT GÞi ¼
1�

2

p
RTt1; vrj jpaT Gmax;

signðvrÞ; vrj jXaT Gmax:

8<
: (23)

Using Eq. (23), the effective friction characteristic for the Stribeck friction law is given by

m̄ðvrÞ ¼
a0 1�

2

p
RTt1

� �
þ a3v3r þ ða1 þ 3a3a2T hG

2iÞvr for vrj jpaT Gmax;

mðvrÞ þ 3a3a2T hG
2ivr for vrj jXaT Gmax:

8><
>: (24)

In Appendix A, Eq. (24) is evaluated in closed form for specific cases of sinusoidal, triangular, and square
dither waveforms. These effective friction laws are shown in Fig. 5 for five different values of dither strength,
assuming that jgjmax ¼ 1. Parts (a)–(c) of the figure correspond to the sinusoidal, triangular, and square dither
waveforms, respectively. As found previously by Thomsen [3], dither acts to smooth the friction discontinuity
in the vicinity of the zero-slip point. As the amplitude of the dither waveform is increased, the discontinuity is
smoothed over a wider range of slip velocities. Secondly, it is seen that the slope of effective friction law is
dependent both on the amplitude and type of dither waveform. According to condition (18), the degree to
which a system is prone to self-excited oscillations is associated with the portions of the curve that have
negative slope. It is seen that the effective friction law exhibits a negative slope in the approximate range
aTGmaxovrovm. Thus, the higher Gmax is, the smaller is the slip-velocity range having negative slope. It is also
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seen that, for some level of dither amplitude, the effective friction characteristic is positively sloped over all
belt speeds. A comparison of the three plots in Fig. 5 shows that, at each level of dither strength aT/vm, the
regions of negative slope are greatest for triangular dither, and least for square dither. This observation is
further detailed and discussed below.
3.2. Effective friction law for decreasing friction

The effective friction characteristic for the decreasing friction law can be obtained analytically, using
Eqs. (4) and (13):

m̄ðvrÞ ¼
1

2p

Z 2p

0

b0 signðuÞ þ b1 exp �
uj j

vm

� �
signðuÞdðRTtÞ, (25)

where

b0 ¼ mm; b1 ¼ ms � mm and u ¼ vr þ aT G. (26)

Rearrangement of Eq. (25) leads to

m̄ðvrÞ ¼ b0hsignðuÞi þ b1 exp �
uj j

vm

� �
signðuÞ

	 

. (27)

As before, in an attempt to evaluate Eq. (27) for arbitrary waveforms, two regimes are identified.
(For simplicity, it is assumed that the slip velocity is positive; the effective friction law is easily shown to be an
odd function of vr.) For vr4aTGmax, u has no sign change on [0, 2p]. In this case, Eq. (27) simplifies to

m̄ðvrÞ ¼ b0 þ
b1
p
exp

�vr

vm

� �Z p

0

exp �
aT GðRTtÞ

vm

� �
dðRTtÞ for vr4aT Gmax. (28)

This expression can be evaluated in a closed-form for the specific cases of sinusoidal, square, and triangular
waveforms. These expressions may be found in Appendix B. In the regime where 0ovroaTGmax, u experiences
one sign change on [0, p]. Using Eq. (23), we can write

m̄ðvrÞ ¼ b0 1�
2

p
RTt1

� �
�

b1
p

Z RT t1

0

exp
vr þ aT GðRTtÞ

vm

� �
dðRTtÞ

þ
b1
p

Z p

RT t1

exp
�vr � aT GðRTtÞ

vm

� �
dðRTtÞ. ð29Þ

Appendix B gives closed-form expressions from Eq. (29) for the cases of square and triangular waveforms;
for the case of sinusoidal waveforms, Eq. (29) requires a numerical evaluation.

Fig. 6 shows a comparison of the effective friction laws for the decreasing friction model for three
dither waveforms and for a variety of dither strengths. As in Fig. 5, the dither signals are normalized
according to their maximum value, jgjmax ¼ 1. There are many similarities between the effective
friction law for the decreasing friction model and for the Stribeck model. They all clearly show the miti-
gating influence of dither for small belt velocities. (Note that the slip velocity is equal to the belt velocity
if and when the mass is in a state of steady sliding.) However, in contrast with the curves in Fig. 5,
those in Fig. 6 show that the effective friction characteristics never completely lose their regions of negative
slope.
4. Stability results

Once the effective friction characteristics have been obtained, the stability can be directly established from
Eq. (18), which involves the derivative of m̄ðvrÞ. Where closed form expressions exist, the derivative may be
calculated analytically (see Appendices A and B); otherwise, the derivative is calculated approximately using
finite differences.
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4.1. Stability results for Stribeck friction law

For any waveform satisfying Assumptions 1–5, the effective friction characteristic for the Stribeck friction
law is given by Eq. (24). Differentiation of Eq. (24) requires knowledge of how changes in vr affect RTt1:

d

dvr

ðvr þ aT GðRTt1ÞÞ ¼ 0) 1þ aT

dG

dðRTt1Þ
dðRTt1Þ

dvr

¼ 0. (30)

Therefore, since dG/dt ¼ g(t)

dðRTt1Þ
dvr

¼
�1

aT gðRTt1Þ
. (31)

Using this relation, an expression for the derivative of Eq. (24) can be obtained:
For jvrjpaT Gmax

m̄0ðvrÞ ¼
2a0

paT gðRTt1Þ
þ ða1 þ 3a3a2T hG

2iÞ þ 3a3v2r . (32)

For jvrj4aT Gmax

m̄0ðvrÞ ¼ m0ðvrÞ þ 3a3a2T hG
2i, (33)

where m0ðvrÞ ¼ 3a3ðv2r � v2mÞ. Because a1o0, it is cumbersome to prove the conditions under which Eq. (32) is
positive; by Eq. (18), this is a sufficient condition for stability. For the three waveforms considered in Fig. 5, it
may be observed that the slope is positive in the range jvrjpaT Gmax. More conclusively, Eqs. (32) and (33)
show that m̄0ðvrÞ is made more positive (or less negative) as hG2i is increased. In other words, the stability of
steady sliding in the system improves as hG2i increases.

An important observation from Eq. (32) can be made. From Fig. 4, it is first noted that as aT is increased
and approaches vr/Gmax, RTt1-0. Since g(t) is assumed to be odd, this means that g(RTt1)-0, and
m̄0ðvrÞ ! þ1. (The possible exception to this occurrence is square waves, for which the value of g(0) is not
strictly defined.) This explains why the slope of the effective friction law in Figs. 5(a) and (b) show infinite
slope just before vr exceeds aTGmax. This also suggests a strategy for improving a system’s stability of sliding by
tailoring the dither signal so that g has a small value at the point where u crosses zero. In other words, the
effective friction characteristic can be made to have arbitrarily high, positive slope if G0 ¼ g is small at the
point where vr+aTG crosses zero.

If one assumes that Eq. (32) is positive, then the condition for instability can be obtained by substituting
Eq. (33) into Eq. (18) with the slip velocity vr replaced with the constant belt velocity v0. For instability in the
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regime jv0jXaT Gmax, it is required that

2zþ F ½3a3ðv20 � v2mÞ þ 3a3a2T hG
2i�o0. (34)

Finally, (34) can be solved for the unstable range of belt velocity:

aT Gmaxov0o½v2m � a2T hG
2i � 2z=ð3a3F Þ�1=2. (35)

Eq. (35) determines the upper and lower bounds of a stability map in the aT�v0 plane for the Stribeck
friction law. Fig. 7, which shows the general shape and characteristics of the stability region, can be viewed as
a generalization of the result for sinusoidal dither first presented by Thomsen in [3]. It is seen that the upper
boundary of the unstable region decreases monotonically with aT. Moreover, the lower bound of the unstable
region increases linearly with aT. This means that, if the undithered system experiences sustained oscillations,
there exists a threshold level of dither strength, denoted by a�T , that is able to quench the limit-cycle
oscillations. Due to the downward sloping upper boundary of the unstable region, one can conclude that it is
impossible for a stable system to become destabilized by an increase in the strength of the dither signal. Thus,
the stability characteristics for the general dither waveforms considered here are qualitatively the same as
those found in [3] for sinusoidal dither in the Stribeck-friction case.

Referring to Fig. 7, it is seen that there is a limiting value of v0 above which the undithered system (aT ¼ 0)
is stable. The limiting value is given by

vS
2 ¼ vm 1�

4zvm

3ðms � mmÞF

� �1=2
(36)

Below vS
2 , we recognize that there are two different ranges of belt speed. For 0ov0ovS

1 , the dither strength
aT required to stabilize the system increases linearly with v0; for vS

1ov0ovS
2 , the stabilizing dither strength aT

decreases with increasing belt speed. Another feature of the map is a limiting value of aT beyond which the
system is stable for all belt speeds. Denoting this dither amplitude as aL

T , it can be shown that

aL
T ¼

vS
2

G2
max þ hG

2i
� �1=2 . (37)

Finally, as evidenced by (35), the influence of viscous damping is to move the upper bound of the stability
region downward, thus reducing the size of the instability region.

Different waveforms can be compared by their influence on the upper and lower bounds of the stability
region. The lower bound increases with Gmax, while the upper bound decreases with hG2i. Thus, we seek a
waveform that satisfies conditions 1–5, and that simultaneously maximizes Gmaxand hG

2i. We distinguish two
cases within this optimization problem: unit-amplitude and unit-rms dither waveforms.

Unit Amplitude:
Of all waveforms that satisfy conditions 1–5 above, it is relatively straightforward to determine that the

optimal unit-amplitude dither waveform is a square wave. Taking into account the antiperiodicity of g(t),
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Gmax is given by

Gmax ¼
1

2

Z p

0

gðtÞdt ¼
1

2

Z p

0

G0ðtÞdt, (38)

where the factor of 1
2
originates with the requirement that G(t)have a zero-average. If Gmax is to be maximized

with jgjmax ¼ 1, it is clear that g(t) should maintain its maximum value over the entire half-period [0,p]. Thus,
the largest possible value for Gmax occurs for a unit-amplitude square wave, for which Gmax ¼ p/2.

The general expression for hG2i is given by

hG2i �
1

2p

Z 2p

0

G2ðRTtÞdðRTtÞ (39)

The requirement that jgjmax ¼ 1 places a limit on the slope of G(t) since G0(t) ¼ g(t). In order for G(t) to
have its largest mean-squared value (while maintaining zero mean) G0(t) ¼+1 for 0otop and G0(t) ¼ �1 for
poto2p. The resulting triangular waveform for G(t) yields a mean-squared value of hG2i ¼ p2=12. Thus, we
arrive at the conclusion that, of all unit-amplitude dither signals consistent with assumptions 1–5, the square

waveform simultaneously maximizes the lower bound and minimizes the upper bound of the unstable region.

Unit rms: Another way of normalizing the dither signals is in terms of their rms amplitude. The constraint of
unit rms value (or equivalently, unit MS value), can be stated as:

MSðgÞ ¼
1

2p

Z 2p

0

g2ðtÞdt ¼
1

p

Z p

0

ðG0Þ2dt ¼ 1. (40)

To maximize Gmax, we must extremize Eq. (38) subject to constraint (40). It may be noted that this is a
standard isoperimetric problem in the calculus of variations [13]. The maximizing dither signal g(t) consistent
with assumptions 1–5 can be shown to be a unit-amplitude square wave. The maximization of hG2i is governed
by another isoperimetric problem; namely, it is necessary to extremize (39) subject to the isoperimetric
constraint (40). The unique result, consistent with assumptions 1-5 is a unit-rms sinewave, gðtÞ ¼

ffiffiffi
2
p

sinðtÞ.
Therefore, in the case of unit-rms dither signals, the square wave still yields the maximum lower bound of the
unstable region. However, the minimum upper boundary is produced by a unit-rms sinusoidal dither signal. The
results are summarized in Table 1.

The rms-value of a signal is often associated with the signal’s "energy." However, it must be noted that the
energy requirement of the dither cancellation technique depends on the integrated power, defined as the dither
force times the absolute velocity of the mass. Comparisons of different dither waveforms in terms of the energy
requirement is an interesting, but much more complicated, problem because it depends on the dynamics of the
entire system.

To specialize the above discussion to the sinusoidal, triangular, and square waveforms, we need to evaluate
Gmax and hG

2i for each case. Table 2 summarizes the results. These values can be inserted into Eq. (35) to give
specific formulas for each of the three waveforms. Explicit formulas can be found in Appendix A.

Based on the values of Gmax for unit-rms waveforms, it is seen that square waves are better than sinusoids
and the sinusoids are better than triangular waveforms in raising the lower bound of the unstable region.
However, based on the values of hG2i for unit-rms waveforms, it is seen that sinusoidal dither signals are best.
Unit-rms triangular waveforms are nearly as good as sinusoids and unit-rms square waveforms fair worse. The
reason is that, of all unit-rms waveforms satisfying assumptions 1–5, the sinusoid focuses all of its energy at a
single frequency.
Table 1

Gmax and hG
2i dependence on dither waveform

Gmax ¼
1
2

R p
0 gðxÞdx hG2i � 1

2p

R 2p
0 G2ðRTtÞdðRT tÞ

Unit amplitude dither Maximized by square wave, p/2 Maximized by square, p2/12
Unit rms dither Maximized by square wave, p/2 Maximized by sine wave, 1
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Fig. 8. Stability map for the Stribeck friction model for three waveforms (a) unit amplitude, (b) unit rms; sinusoidal waveform -J-, square

waveform -&-, triangular waveform -n-. Parameters: z ¼ 0.005, F ¼ 1, vm ¼ 0.2, ms ¼ 0.4, and mm ¼ 0.29.

Table 2

Gmax and hG
2i for sinusoidal, square, and triangular waveforms

Dither signal Gmax hG2i

Unit amplitude sinewave 1 0.5

Unit amplitude triangular wave p/4 ¼ 0.7854 p2/30 ¼ 0.3290

Unit amplitude squarewave p/2 ¼ 1.5708 p2/12 ¼ 0.8225

Unit rms sinewave
ffiffiffi
2
p
¼ 1:4142 1

Unit rms triangular wave p
ffiffiffi
3
p

=4 ¼ 1:3603 p2/10 ¼ 0.9870

Unit rms squarewave p/2 ¼ 1.5708 p2/12 ¼ 0.8225
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Fig. 8(a) shows a comparison of the stable region for unit-amplitude sinusoidal, square, and triangular
waveforms for the Stribeck friction case. It is seen that there is a significant improvement of sinusoids over
triangular waveforms and of square waves over sinusoidal in the unit-amplitude case. In the unit-rms case,
shown in Fig. 8(b), it is seen that the relative performance of each waveform shows less variation. That being
said, the square waves show best performance for belt speeds lower than vS

1 , and show reasonable performance
in the range vS

1ovrovS
2 . Assuming that the actuators and power electronics can accommodate square

waveforms, they are shown to be a good choice in application to systems exhibiting Stribeck friction
characteristics.

4.2. Stability results for decreasing friction law

To determine the stability of the dithered system having a decreasing friction relation, we need the derivative
of the effective friction laws shown in Eqs. (28) and (29). For vr4aTGmax, we obtain:

m̄0ðvrÞ ¼
�b1
vmp

exp
�vr

vm

� �Z p

0

exp �
aT GðRTtÞ

vm

� �
dðRTtÞ, (41a)

m̄0ðvrÞ ¼
�2b1
vmp

exp
�vr

vm

� �Z p=2

0

cosh
aT GðRTtÞ
�� ��

vm

� �
dðRTtÞ, (41b)
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where the simplification in Eq. (41b) is made possible by the fact that G(p�t) ¼ �G(t). (For simplicity, vr is
assumed to be positive; the result for vro0 is easily obtained by recognizing that the effective friction law is
odd.) Inspection of this relation shows that for vr4aTGmax, m̄0ðvrÞo0 for all waveforms. This may be validated
by inspection of Fig. 6, where the slope is noticeably negative when vr4aTGmax. For the limiting value of
vr ¼ aTGmax, Eq. (41) takes the form

m̄0ðvrÞ ¼
�b1
vmp

exp
�vr

vm

� �Z p

0

exp �
vrGðRTtÞ=Gmax

vm

� �
dðRTtÞ. (42)

It is noted that, as vr increases, m̄0ðvrÞ goes to zero from below, meaning that the sliding state becomes ‘‘less
prone to instability’’ as the belt speed is increased. From a practical standpoint, this means that for sufficiently
high belt speeds, stable sliding can be assured by very small amounts of viscous damping.

Before one can take the derivative of (29), it must be recalled that t1 depends on vr. Differentiation of the
first term in (29) makes use of (31); differentiation of the second term, which involves t1 in the integration
limits, requires use of Leibnitz’s rule. For 0ovroaTGmax,

m̄0ðvrÞ ¼
2ðb0 þ b1Þ
paT gðRTt1Þ

�
b1

vmp

Z RT t1

0

exp
vr þ aT GðRTtÞ

vm

� �
dðRTtÞ

�
b1

vmp

Z p

RT t1

exp
�vr � aT GðRTtÞ

vm

� �
dðRTtÞ. ð43Þ

The first term is positive for all dither signals satisfying assumptions 1–5. However, since the integral terms
are negative, the derivative m̄0ðvrÞ can be positive or negative in this range of operation.

To assess the stability of the undithered system with a decreasing friction law, we must first set aT ¼ 0 in
Eq. (41). This gives

m̄0ðvrÞ ¼
�b1
vm

exp
�vr

vm

� �
. (44)

Now, using (18), it is found that steady-sliding of the undithered system is unstable for all belt speeds lower
than vD

2 given by

vD
2 ¼ vm ln

Fb1
2zvm

� �
. (45)

In [2] is was found that the upper bound of the unstable region is concave up for the decreasing friction law
subjected to sinusoidal dither signals. This is confirmed for arbitrary waveforms, if one considers how m̄0ðvrÞ in
(41b) changes with aT. For a given belt speed and dither signal, m̄0ðvrÞ becomes more negative as aT increases.
Therefore if vr4vD

2 , the undithered system will experience steady sliding, but increasing the dither strength
runs the risk of making the slope of the effective friction law more negative, thus destabilizing the system. As
discussed above, the instability will be avoided if vr is sufficiently high, and some small amount of viscous
damping is present.

The question of ‘‘optimal waveforms’’ follows a similar reasoning to that presented in the context of
the Stribeck friction law. The lower bound of the unstable region is given by the line vr ¼ aTGmax; therefore,
the optimal waveform is the one that maximizes Gmax. Whether normalized by unit-rms or unit amplitude, the
waveform conforming to assumptions 1–5 that maximizes Gmax is a square wave.

Because of the concave-up nature of the upper boundary of the unstable region, the question of ‘‘optimal’’
dither waveforms loses its significance. Obviously, for vr4vD

2 , the optimal dither signal to stabilize steady-
sliding is zero. However, it is instructive to examine how the dither signal influences the upper boundary of the
unstable region. Figs. 9(a) and (b) compare the stable regions for the system with a decreasing friction law for
the three different waveforms in the unit-amplitude and unit-rms cases. In the unit-amplitude case, it is seen
that the square wave produces the narrowest unstable region of the three waveforms under consideration. It
also clearly shows that, for vrovD

2 , the square waves perform better than the sinusoids, which in turn,
outperform the triangular waveforms. However, just as square waves are more efficient at stabilizing steady-
sliding, they are also more efficient at destabilizing steady-sliding in the decreasing friction case. In the unit-rms
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case shown in Fig. 9(b), square waves are still clearly better than sinusoidal or triangular waveforms for
vrovD

2 . However, the differences among unit-rms waveforms with respect to the upper boundary of the
unstable region are much slighter.

5. Numerical simulation study

The results from the averaging technique can be checked against results obtained from numerical
integration. As with all frictional systems, care must be taken in numerical integration routines to deal with
numerical stiffness in the vicinity of the discontinuity. In this study, a Runge-Kutta routine is used to directly
integrate Eq. (1) during periods of slip. When the slip velocity changes sign and/or becomes sufficiently small,
a careful determination of the switching time is determined by backing up and re-integration using smaller
time steps. This process is repeated until the switching time converges. Two types of numerical investigations
are discussed below. In Section 5.1, simulations are presented that demonstrate the ability of the three types of
dither waveforms to eliminate friction-induced oscillations. In Section 5.2, the potential destabilizing influence
of dither is demonstrated.

5.1. Cancellation of friction-induced oscillations by dither

Without dither, the sdof system of Fig. 1 is well known to be prone to sustained stick-slip oscillations.
For the system and Stribeck friction parameters used in this work, the undithered system settles into
a stable limit cycle after a short transient at a fundamental frequency that is close to the natural frequency
(E0.666o0).

Fig. 10 shows typical numerical simulation results using the Stribeck friction model with v0 ¼ 0.05 and
RT ¼ 10. The dashed lines denote the results for the system with no dither and the solid lines show the results
for the dithered system with DT ¼ 0.4 (aT ¼ 0.04), and for the three different unit-amplitude waveforms. For
triangular dither waveforms, case (a) in Fig. 10, the dithered response shows some amplitude reduction
relative to the undithered system. For sinusoidal dither, case (b) in Fig. 10, the response exhibits greater
control. The situation depicted in cases (a) and (b) in Fig. 10 is termed ‘‘partial control.’’ For square dither
waveforms, case (c) in Fig. 10, the system is fully controlled by dither. In other words, the self-excited
free-response oscillations are replaced with a forced response at the frequency of the dither input (and its
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higher harmonics). Consistent with the results of the averaging method, sinusoidal waveforms achieve a higher
level of control than triangular waveforms, but a lower level of control than square waveforms, for a given
dither amplitude. The numerical-simulation results of Fig. 10 can be correlated with the stability curves shown
in Fig. 8(a). The point aT ¼ 0.04, v0 ¼ 0.05 is well inside the unstable region for the unit-amplitude triangular
waveform; it is just inside the unstable region for unit-amplitude sinusoidal waveform. However, for the unit-
amplitude square waveform, the point is outside the unstable region.

5.2. Destabilizing effect of dither in the case of the decreasing friction law

As mentioned in Section 4, it is possible to destabilize steady sliding in system with the decreasing friction
law by injecting dither into the system. To explore this further, numerical simulations are conducted holding
the belt velocity and the dither frequency ratio constant, and observing the response as DT is increased. For
unit-amplitude triangular dither signals, Fig. 11 shows the system response for 6 different values of DT when
the belt velocity is v0 ¼ 1 and RT ¼ 10.
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The top row shows the displacement response to zero initial conditions. Note that at DT ¼ aT ¼ 0, Fig. 9(a)
shows that the undithered system is stable. Thus the system should settle into a steady-sliding condition after
the transient vibration dies out.

From Fig. 9(a), the averaging method predicts that triangular dither should destabilize steady-sliding for
aT ¼ 0.54, i.e. DT ¼ aTRT ¼ 5.4. The system should return to a stable state for aT41.27, which corresponds to
DT412.7. Fig. 11 qualitatively validates this behavior. However, steady-sliding becomes unstable at a lower
dither amplitude, DTX4. Nevertheless, there is agreement with the averaging results for the return to stability
prediction, as the system is re-stabilized for dither amplitudes DTX13.

The bottom row of plots in Fig. 11 shows the Poincaré plots as DT changes. The Poincaré section is chosen
to coincide with the time instants RTtn ¼ 2np for n ¼ 0,1,2,y . During ‘‘stable’’ response, the Poincaré plot
spirals down to a period-1 response. When the dither signal destabilizes the system, the Poincaré plot shows a
closed-orbit, closely resembling a period-10 response. It appears that the dither signal is successful in
smoothing the nonlinearity, so that the low-frequency response is at or near o0, even though the limit-cycle
oscillation occurs typically at a lower frequency. In the case of an unstable response, this sustained low-
frequency response component is joined to a second component having a period equal to that of the dither
signal.

From the numerical simulation shown, and from others generated using other dither waveforms, it is clear
that it is possible to destabilize a system through tangential dither, regardless of whether the dither waveform
is sinusoidal, triangular, or square. However, it is also seen that, just as unit-amplitude square waveforms are
most able to stabilize a self-excited oscillation, they are also most able to destabilize a system in comparison to
unit-amplitude triangular and sinusoidal waveforms of the same strength and period.

6. Concluding remarks

Prior work [2] studied the performance of sinusoidal dither waveforms to quench self-excited oscillations in
a sdof mass-on-a-moving belt system. The sinusoidal dither study revealed that there were qualitative
differences in behavior depending on the friction law. In particular, self-excited oscillations in systems having
Stribeck friction (characterized by a high-speed ‘‘lubricated regime’’) are benefited in all cases by tangential
dither, as shown originally by Thomsen [3]. However, models incorporating a steadily decreasing friction law
were found to be stabilized or destabilized by tangential dither, depending on the belt speed and the dither
strength.

This paper extends this result to more-general, periodic dither signals. Two different subclasses are
considered: unit-amplitude (i.e., unit peak value) and unit-rms dither signals. The effect of dither waveform on
stability is studied using an averaging technique and using direct time-integration. The general results are then
specialized to the cases of sinusoidal, triangular, and square dither waveforms.

It is shown that, among all dither signals having the same period and peak-amplitude, square waves have
the largest effect on friction-induced oscillations. Furthermore, they produce the smallest region of instability
in parameter space. In that sense, they are optimal. This trend was observed for both the Stribeck friction law
and the decreasing friction law. Analytical results from an averaging technique show that unit-amplitude
sinusoidal waveforms requires a higher dither strength than square waveforms, but a lower strength than
triangular waveforms in order to achieve stability of an unstable system, at any belt velocity. This prediction
was confirmed using numerical simulations.

The results differed somewhat when the dither signals were normalized by their rms value. In that case, it
was found that square waveforms outperform other types of waveforms in some ranges of belt velocity, but
sinusoids outperform triangular waveforms, and triangular waveforms outperform square waveforms of equal
rms value in other ranges of belt velocity. Overall, it was observed that there was far less variation among the
stability regions produced by various unit-rms waveforms than among the stability regions corresponding to
various unit-amplitude dither waveforms, regardless of the friction law employed.

Analyses of systems with the decreasing friction law show that it is possible to destabilize steady-sliding
through application of general, periodic dither waveforms. This phenomenon, observed previously in the case
of sinusoidal dither [2], is not observed in systems using the Stribeck friction model. Both the averaging
technique and numerical simulations show that a system that exhibits stable sliding when undithered can be
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destabilized by applying dither with triangular and square waveforms of intermediate strength. For a given
belt velocity, the range of dither amplitudes that destabilizes the system is broad and within high amplitude
levels for the triangular waveforms, and is narrow and within low amplitude levels for the square waveforms.
The range of destabilizing dither amplitudes for sinusoidal waveforms lies between that of the triangular and
the square waveforms. Also, just as square waves had the best ability to quench self-excited oscillations, they
also required the least strength to destabilize steady-sliding among all unit-amplitude waveforms. When
normalized by unit-rms value, all three waveforms displayed similar capability to destabilize steady sliding.
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Appendix A. Effective friction law relations for Stribeck case

This appendix gives a brief development of the effective friction laws and their derivatives for the Stribeck
friction case. The reader is referred to [14] for further details. The effective friction characteristic for the
Stribeck friction law was given in Eq. (19):

m̄ðvrÞ ¼
1

2p

Z 2p

0

a0signðuÞ þ a1ðvr þ aT GÞ þ a3ðvr þ aT GÞ3
� �

dðRTtÞ, (A.1)

where

a0 ¼ ms; a1 ¼ �
3

2

ðms � mmÞ

vm

; a3 ¼
1

2

ðms � mmÞ

v3m
; and u ¼ vr þ aT G.

As described above, the effective friction characteristic for the Stribeck friction law for any of the three
waveforms under consideration is given by

m̄ðvrÞ ¼
a0 1�

2

p
RTt1

� �
þ ða1 þ 3a3a2T hGðRTtÞ

2
iÞvr þ a3v3r for jvrjpaT Gmax

mðvrÞ þ 3a3a2T hGðRTtÞ
2
ivr for jvrjXaT Gmax

8><
>: . (A.2)

The derivative of (A.2) was also derived above for general dither waveforms: For jvrjpaT Gmax

m̄0ðvrÞ ¼
2a0

paT gðRTt1Þ
þ ða1 þ 3a3a2T hG

2iÞ þ 3a3v2r (A.3)

For jvrj4aT Gmax

m̄0ðvrÞ ¼ m0ðvrÞ þ 3a3a2T hG
2i, (A.4)

where m0ðvrÞ ¼ 3a3ðv2r � v2mÞ.

A.1. Sinusoidal dither waveform

In the case of sinusoidal dither, g(t) and G(t) are given by Eqs. (7a) and (7b), respectively. From these, it can
be shown that Gmax ¼ 1, RTt1 ¼ arccosðvr=aT Þ, and hGðRTtÞ

2
i ¼ 1=2. Using these relations, (A.2) reduces to

the exact form given by Thomsen [3]:

m̄ðvrÞ ¼

a0 1�
2

p
arccos

vrj j

aT

� �� �
signðvrÞ þ a1 þ

3

2
a3a2T

� �
vr þ a3v3r for vrj jpaT

mðvrÞ þ
3

2
a3a2T vr for vrj jXaT

8>><
>>: . (A.5)
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A.2. Triangular dither waveform

For the unit-amplitude triangular waveform given in Eqs. (8a) and (8b), it can be shown that Gmax ¼ p/4,
RTt1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2=4Þ � ðp vrj j=aT Þ

p
, and hGðRTtÞ

2
i ¼ p2=30. Using these relations in Eq. (A.2) gives

m̄ðvrÞ ¼

a0 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4

p
vrj j

aT

r� �
signðvrÞ þ a1 þ

p2

10
a3a2T

� �
vr þ a3v3r for vrj jp

p
4
aT

mðvrÞ þ
p2

10
a3a2T vr for vrj jX

p
4
aT

8>>><
>>>:

. (A.6)

A.3. Square dither waveform

For the unit-amplitude square wave given in Eqs. (9a) and (9b), it can be shown that Gmax ¼ p/2,
RTt1 ¼ ðp=2Þ � ðvr=aT Þ, and hGðRTtÞ

2
i ¼ p2=12. Using these relations in Eq. (A.2) gives

m̄ðvrÞ ¼

2

p
a0
aT

þ a1 þ
p2

4
a3a2T

� �
vr þ a3v3r for vrj jp

p
2
aT

mðvrÞ þ
p2

4
a3a2T vr for vrj jX

p
2
aT

8>>><
>>>:

. (A.7)

A.4. Derivatives of the effective friction laws

For the case of jvrj4aT Gmax, Eq. (A.4) shows that the derivative depends only on hG2i. These values are
listed in Table 2 for unit-amplitude and unit-rms sinusoidal, triangular, and square waveforms. For the case
jvrjoaT Gmax, (A.3) can be evaluated in closed-form for each waveform. In addition to hG2i, (A.3) also
depends on g(RTt1), which is easily determined in terms of vr and aT for each waveform.

Appendix B. Effective friction law relations for decreasing friction case

Equations for the effective friction law, m̄ðvrÞ, and for the derivative m̄0ðvrÞ were given above for general
dither waveforms conforming to assumptions 1–5. In this appendix, those general equations are specialized for
the sinusoidal, square, and triangular waveforms given by Eqs. (7)–(9). (The reader is referred to [14] for
further details.) The formulas are specific to the unit-amplitude case, but extensions to the unit-rms case are
straightforward. Also, the belt speed is assumed to be positive. The effective friction law for the decreasing
friction relation was given in Eq. (27):

m̄ðvrÞ ¼
1

2p

Z 2p

0

b0signðuÞ þ b1 exp �
uj j

vm

� �
signðuÞdðRTtÞ, (B.1)

where

b0 ¼ mm; b1 ¼ ms � mm; and u ¼ vr þ aT G. (B.2)

For vr4aT Gmax, we obtain

m̄ðvrÞ ¼ b0 þ
b1
p
exp

�vr

vm

� �Z p

0

exp �
aT GðRTtÞ

vm

� �
dðRTtÞ (B.3)

and

m̄0ðvrÞ ¼ �
b1
pvm

exp
�vr

vm

� �Z p

0

exp �
aT GðRTtÞ

vm

� �
dðRTtÞ. (B.4)
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For 0ovroaT Gmax, we obtain

m̄ðvrÞ ¼ b0 1�
2

p
RTt1

� �
�

b1
p

Z RT t1

0

exp
vr þ aT GðRTtÞ

vm

� �
dðRTtÞ

þ
b1
p

Z p

RT t1

exp
�vr � aT GðRTtÞ

vm

� �
dðRTtÞ, ðB:5Þ

and

m̄0ðvrÞ ¼
2ðb0 þ b1Þ
paT gðRTt1Þ

�
b1

vmp

Z RT t1

0

exp
vr þ aT GðRTtÞ

vm

� �
dðRTtÞ

�
b1

vmp

Z p

RT t1

exp
�vr � aT GðRTtÞ

vm

� �
dðRTtÞ, ðB:6Þ

B.1. Sinusoidal waveform

For vr4aT Gmax, we obtain

m̄ðvrÞ ¼ b0 þ
b1
p
exp

�vr

vm

� �Z p

0

exp
aT cosðRTtÞ

vm

� �
dðRTtÞ. (B.7)

A closed-form expression can be obtained for m̄ðvrÞ and m̄0ðvrÞ:

m̄ðvrÞ ¼ b0 þ b1 exp
�vr

vm

� �
Io

aT

vm

� �
(B.8)

and

m̄0ðvrÞ ¼ �
b1
vm

exp
�vr

vm

� �
Io

aT

vm

� �
, (B.9)

where I0 is the modified Bessel function of order zero:

I0ðzÞ ¼
1

p

Z p

0

expð�z cosðyÞÞdy. (B.10)

Eq. (B.9) shows that m̄0ðvrÞ is clearly negative for all belt speeds in the range vr4aT Gmax. For 0ovroaT Gmax,
we obtain

m̄ðvrÞ ¼ b0 1�
2

p
RTt1

� �
�

b1
p
exp

vr

vm

� �Z RT t1

0

exp �
aT cosðRTtÞ

vm

� �
dðRTtÞ

þ
b1
p
exp

�vr

vm

� �Z p

RT t1

exp
aT cosðRTtÞ

vm

� �
dðRTtÞ ðB:11Þ

and

m̄0ðvrÞ ¼
2ðb0 þ b1Þ
paT gðRTt1Þ

�
b1

vmp
exp

vr

vm

� �Z RT t1

0

exp
�aT cosðRTtÞ

vm

� �
dðRTtÞ

�
b1

vmp
exp

�vr

vm

� �Z p

RT t1

exp
aT cosðRTtÞ

vm

� �
dðRTtÞ, ðB:12Þ

where

RTt1 ¼ cos�1
vr

aT

� �
.

Given the form of the integrals, (B.11) and (B.12) are evaluated numerically.
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The upper boundary of the unstable region is obtained by substituting Eq. (B.9) into Eq. (18). Steady-
sliding is predicted to be unstable in the range

GmaxaTovrovm ln
Fb1I0ðaT=vmÞ

2zvm

� �
, (B.13)

where Gmax ¼ 1.
B.2. Square waveform

For vr4aT Gmax, we obtain

m̄ðvrÞ ¼ b0 þ
b1
p
exp

�vr

vm

� �Z p

0

exp �
aTp
2vm

þ
aT

vm

t
� �

d t: (B.14)

Closed-form expressions can be obtained for m̄ðvrÞ and m̄0ðvrÞ:

m̄ðvrÞ ¼ b0 þ
2b1vm

paT

exp
�vr

vm

� �
sinh

aTp
2vm

� �
, (B.15)

and

m̄0ðvrÞ ¼ �
2b1
paT

exp
�vr

vm

� �
sinh

aTp
2vm

� �
. (B.16)

Eq. (B.16) shows that m̄0ðvrÞ is clearly negative for all belt speeds in the range vr4aT Gmax.
For 0ovroaT Gmax, RTt1 ¼ ðp=2Þ � ðvr=aT Þ and GðRTtÞ ¼ �p=2þ RTt on [0,p]

m̄ðvrÞ ¼
2b0vr

paT

�
b1
p

Z RT t1

0

exp
vr þ aT ðRTt� p=2Þ

vm

� �
dðRTtÞ

þ
b1
p

Z p

RT t1

exp
�vr � aT ðRTt� p=2Þ

vm

� �
dðRTtÞ ðB:17Þ

This is easily evaluated as

m̄ðvrÞ ¼
2b0vr

p aT

þ
2b1vm

p aT

exp �
p aT

2vm

� �
sinh

vr

vm

� �
. (B.18)

Similarly, evaluation of (B.6) for m̄0ðvrÞ gives

m̄0ðvrÞ ¼
2b0
paT

þ
2b1
paT

exp �
paT

2vm

� �
cosh

vr

vm

� �
(B.19)

The upper boundary of the unstable region is obtained by substituting Eq. (B.16) into Eq. (18). Steady-
sliding is predicted to be unstable in the range

GmaxaTovrovm ln
Fb1
pzaT

sinh
aTp
2vm

� �� �
, (B.20)

where Gmax ¼ p=2.
B.3. Triangular waveform

It is convenient to use the fact that Gðp� RTtÞ ¼ �GðRTtÞ in Eq. (B.3). This gives

m̄ðvrÞ ¼ b0 þ
b1
p
exp

�vr

vm

� � Z p=2

0

exp �
aT GðRTtÞ

vm

� �
dðRTtÞ þ

Z p=2

0

exp þ
aT GðRTtÞ

vm

� �
dðRTtÞ

( )
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for vr4aT Gmax. From Eq. (8b), GðRTtÞ ¼ �ðp=4Þ þ ðt2=pÞ on the interval [0,p/2]. Therefore,

m̄ðvrÞ ¼ b0 þ
b1
p
exp

�vr

vm

� �

� exp
paT

4vm

� �Z p=2

0

exp �
aTt2

pvm

� �
dðRTtÞ þ exp �

paT

4vm

� �Z p=2

0

exp
aTt2

pvm

� �
dðRTtÞ

" #
,

or

m̄ðvrÞ ¼ b0 þ
b1
2

ffiffiffiffiffiffi
vm

aT

r
exp

�vr

vm

� �
expðgÞerfð

ffiffiffi
g
p
Þ þ expð�gÞerfið

ffiffiffi
g
p
Þ

� �
, (B.21)

where g ¼ pvm=4aT and

erf ðzÞ ¼
2ffiffiffi
p
p

Z z

0

expð�z2Þdz and erfiðzÞ ¼
2ffiffiffi
p
p

Z z

0

expðþz2Þdz.

Differentiation of (B.19) with respect to vr yields

m̄0ðvrÞ ¼ �
b1

2
ffiffiffiffiffiffiffiffiffiffiffi
aT vm
p exp

�vr

vm

� �
expðgÞerfð

ffiffiffi
g
p
Þ þ expð�gÞerfið

ffiffiffi
g
p
Þ

� �
. (B.22)

Eq. (B.22) shows that m̄0ðvrÞ is clearly negative for all belt speeds in the range vr4aT Gmax.
For 0ovroaT Gmax, we start again with (B.5):

m̄ðvrÞ ¼ b0 1�
2

p
RTt1

� �
�

b1
p

Z RT t1

0

exp
vr þ aT GðRTtÞ

vm

� �
dðRTtÞ

þ
b1
p

Z p=2

RT t1

exp
�vr � aT GðRTtÞ

vm

� �
dðRTtÞ

þ
b1
p

Z p

p=2
exp

�vr � aT GðRTtÞ
vm

� �
dðRTtÞ, ðB:23Þ

where RTt1 ¼ ðp=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð4vr=paT Þ

p
. The limits of the third integral can be modified using the fact that

Gðp� RTtÞ ¼ �GðRTtÞ:

m̄ðvrÞ ¼ b0 1�
2

p
RTt1

� �
�

b1
p

Z RT t1

0

exp
vr þ aT GðRTtÞ

vm

� �
dðRTtÞ

þ
b1
p

Z p=2

RT t1

exp
�vr � aT GðRTtÞ

vm

� �
dðRTtÞ þ

b1
p

Z p=2

0

exp
�vr þ aT GðRTtÞ

vm

� �
dðRTtÞ.

Substituting that GðRTtÞ ¼ �ðp=4Þ þ ðt2=pÞ on the interval [0, p/2], we get

m̄ðvrÞ ¼ b0ð1� 2RTt1=pÞ þ
b1
2

ffiffiffiffiffiffi
vm

aT

r
exp �

vr

vm

� �
expðgÞ erfð

ffiffiffi
g
p
Þ � erfðdÞ

� �
�

b1
2

ffiffiffiffiffiffi
vm

aT

r
exp

vr

vm

� �
expð�gÞerfiðdÞ þ

b1
2

ffiffiffiffiffiffi
vm

aT

r
exp �

vr

vm

� �
expð�gÞerfið

ffiffiffi
g
p
Þ, ðB:24Þ

where d ¼ ð2RTt1=pÞ
ffiffiffi
g
p

. A similar procedure to evaluate (B.6) yields

m̄0ðvrÞ ¼
2ðb0 þ b1Þ
paT gðRTt1Þ

�
b1

2
ffiffiffiffiffiffiffiffiffiffiffi
aT vm
p exp �

vr

vm

� �
expðgÞ erfð

ffiffiffi
g
p
Þ � erfðdÞ

� �
�

b1
2
ffiffiffiffiffiffiffiffiffiffiffi
aT vm
p exp

vr

vm

� �
expð�gÞerfiðdÞ �

b1
2
ffiffiffiffiffiffiffiffiffiffiffi
aT vm
p exp �

vr

vm

� �
expð�gÞerfið

ffiffiffi
g
p
Þ. ðB:25Þ
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The upper boundary of the unstable region is obtained by substituting Eq. (B.22) into Eq. (18). Steady-
sliding is predicted to be unstable in the range

GmaxaTovrovm ln
Fb1

4z
ffiffiffiffiffiffiffiffiffiffiffi
aT vm
p expðgÞerfð

ffiffiffi
g
p
Þ þ expð�gÞerfið

ffiffiffi
g
p
Þ

� �� �
, (B.26)

where Gmax ¼ p=4.
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